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Abstract— Educational Robotics (ER) focuses on developing
tools to enhance learning experiences. Simulators are recurrent
in ER due to their convenience for substituting physical setups,
and assist when teaching real robotics applications. However,
one limitation is often the achievable level of realism. At Tec,
students from the robotics major learn autonomous robots
through an integration project. To expand the availability of
the required test circuits, we developed a simulator featuring
a photo-realistic 3DGS environment and a ROS2 interface.

I. INTRODUCTION
Educational Robotics (ER) focuses on developing ped-

agogical tools and methodologies to enhance learning ex-
periences in science and engineering. The objective is to
make students engaged in exploration, hypothesis formu-
lation, and experimentation, where they obtain feedback to
allow mastering robotics concepts [1]. ER also promotes the
development of critical thinking, problem-solving skills, and
metacognitive abilities critical for innovation [2].

Simulators are recurrent in ER due to their convenience for
substituting physical setups and for allowing remote teaching
[3]. We think that they can also assist in teaching real 4D
(dangerous, difficult, dirty & dull) robotics applications (e.g.
infrastructure inspection [4], [5]). However, a limitation is
often the achievable level of realism [6].

We propose leveraging state-of-art 3D scanning and ren-
dering techniques that can assist in overcoming said limita-
tion, particularly 3D Gaussian Splatting (3DGS) [7]. Due to
3DGS’s efficient use of resources with respect to classical
photogrammetry [8] and NeRF [9], its popularity grew
explosively in less than a year from its initial publication.
Latest updates include: SLAM [10], [11], 3D meshing [12],
and physics integration [13]. This document describes how
a simulator was developed and used to emulate the learning
experiences, typically obtained when performing trials in a
real environment for an undergraduate course on robotics.

II. METHODOLOGY
At Tec de Monterrey, students from the robotics major

learn about control engineering, as well as classical and
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modern computer vision (CV) based on convolutional neural
networks through a knowledge integration project. The goal
of the project is to make a Puzzlebot® [14] move within a
physical circuit by following a line, and enable it to make
decisions based on traffic signs without human intervention
[15]. The deliverable is a software with the control and CV
techniques that allow the robot completing a circuit lap.

As an attempt on expanding the availability of testing
environments while keeping similar learning experiences, we
developed a proof-of-concept (PoC) simulator in Unity3D
[16]. The PoC includes a 3DGS scene of the test circuit
with traffic signs to try-out autonomous driving for the
Puzzlebot®, and a communication interface for ROS2. The
dataset for creating the 3DGS env. included images from a
4 min. Standard 1080p video taken by a GoPro HERO 10
Black at an illuminance range of 550 to 1500 lux. The 3DGS
scene was generated utilizing NeRF Studio’s gsplat [17]
and default Splatfacto model with the suggested “Quality
and Regularization” settings [18], post-processed to remove
floating outliers using Blender 4.0 [19] (Fig. 1.a).

To validate the use of the simulator for learning the
aforementioned robotics techniques, the software from two
teams of students was used to control the robot in the
simulator, and the performance was compared against real
tests on the physical circuit. We avoided altering the teams’
usage of coding tools and program logic for running on the
virtual circuit to enable a 1-to-1 comparison against the real
one. Finally, we assessed the quality of the simulated images.

III. FINDINGS

The validation test consisted on three trials: the first to
confirm similar CV performance by detecting of the track
line to be followed, and by detecting the pertinent traffic
signs; the second to verify if a complete full lap of the given
circuit can be run by the robot, while being driven by a PID
controller aiming at the track line; and the third to assess the
quality of the simulated images though color histograms.

Although parameters such as PID gains, image filter
thresholds and ROIs needed adjustments due to the simplistic
robot dynamics and camera model, we obtained positive re-
sults (Fig. 1.b): Both teams detected the track line and traffic
signs at all times; one team ran a full lap without human
intervention, while the other required limited assistance to
complete a lap; and obtained an average of 50% overlap be-
tween HSV histograms from real and sim. images despite the



Fig. 1. (a) System Overview and (b) Trial Tests

background differences, suggesting photo-realism. Also, we
identified further needs: sim. motor encoders to complement
visual feedback, and dynamic assets like traffic lights.

The students’ feedback suggests that the simulator ac-
curately emulates the learning experience of the real en-
vironment. Similar issues were encountered such as light
reflections on the track in certain zones of the circuit at
certain camera poses, requiring solutions for assuring the
correct detection of the track line, and for dealing with the
natural imperfections of the track and traffic signs.

IV. CONCLUSIONS
From this experience, we think that the current PoC can

become a valuable tool for learning and practicing Robot
Vision (RV) techniques at the undergraduate level. Future
work will enhance the simulator by leveraging the achievable
simplicity of the 3DGS approach. To target more complex
challenges beyond RV tasks, we will keep looking for
different solutions to model the dynamics of the robot and
the environment, to add system perturbations, and to enable
sensors for practicing localization and navigation techniques
such as Kalman Filters, SLAM and Bug algorithms.

Beyond extending the availability of test environments, we
aim to study the simulator’s impact on student engagement
and learning outcomes when they are introduced to the
techniques used in service robotics. We are also looking
to potentially apply gamification techniques and the theory
of mental flow [20] to enhance the educational experience
further. Finally, we would like to assess the quality of the
simulator through a usability study [21].
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