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Abstract— Educational Robotics (ER) focuses on developing
tools to enhance learning experiences. Simulators are recurrent
in ER due to their convenience as substitutes for physical setups,
providing assistance when teaching real robotics applications.
However, one limitation is often the achievable level of realism.
At Tecnologico de Monterrey, students majoring in robotics
learn about autonomous robots through integration projects
during their junior and senior years. To expand the availability
of the required test courses, we propose a scene generation
pipeline to create affordable simulated environments. We de-
veloped two versions of a simulator featuring a photorealistic
3DGS environment, LiDAR signals, and a ROS2 interface. We
validated our proposal through trial runs with both real and
simulated robots, as well as an assessment of image quality.

I. INTRODUCTION

Robotics not only drives significant technological ad-
vancements, but also serves as an invaluable educational
tool, facilitating learning by fostering STEAM (Science,
Technology, Engineering, Art, and Mathematics) [1]. Ed-
ucational Robotics (ER) emerges as a field focusing on
the development of pedagogical tools and methodologies
to enhance students’ learning experiences in technology.
ER helps develop creativity, critical thinking, and problem-
solving skills in students. At the same time, it promotes
collaboration and engagement in the performed activities,
making learning more interactive and effective [2].

Virtual environments implemented as simulators [3] and
virtual reality (VR) tools [4] are utilized for learning and
developing robotics, where students can access tools that
closely replicate properties of the real world, and often can
do so in a remote location from their educational facilities
[5]. Studies indicate that these facilitate the understanding of
abstract concepts, maintain student motivation, and enhance
the overall learning experience [6] [7]. Therefore, we believe
that simulations and VR tools can assist in teaching advanced
real-life 4D (dangerous, difficult, dirty & dull) applications
requiring a certain degree of Robot Perception (RP) (e.g.
infrastructure inspection [8] [9], search and rescue [10], etc).

To achieve affordable, portable and scalable photorealistic
virtual environments for ER, we propose a scene generation
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pipeline leveraging on a modern 3D reconstruction tech-
nique along with a popular robotics simulator (Fig. 1). As
educational innovation, we use our proposed pipeline for
creating a tool to generate a virtual environment for teaching
RP at an undergraduate level, while emulating a learning
experience that is typically obtained only through a real
physical environment.

II. STATE OF THE ART

In recent literature one can find approaches that integrate
classical [3] and modern [11] [12] robotics simulators, frame-
works such as ROS, and graphics engines to create testbeds
for developing Robot Perception (RP) algorithms (includ-
ing Robot Vision) [13]. When using virtual environments
for developing RP, an often-encountered challenge is the
achievable level of realism [14]. Some approaches apply
photogrammetry methods that leverage neural networks and
optimization techniques to generate photorealistic 3D digital
twins [15] [16].

3D Gaussian Splatting (3DGS) [17] is one of such op-
timization techniques, used in 3D reconstruction and ren-
dering. Its characteristics include real-time performance,
photorealistic quality [18], availability of optimized model
variants [19] and integration in modern 3D engines [20] [21].
This puts 3DGS at an advantage with respect to classical
photogrammetry [22] [23] [24] and other modern approaches
such as NeRF [25] and Plenoxels [26], causing the exponen-
tial growth of its popularity after its initial release. Later
contributions expanding the use of 3DGS included SLAM
[27], [28], 3D meshing [29], and physics integration [30].

Another approach to create realistic virtual environments
that we consider intriguing and worth mentioning is the use
of Generative Artificial Intelligence (GenAI), such as the
recently released Cosmos World Foundation Model (WFM)
Platform [31]. This WFM uses datasets from real and syn-
thetic sources to train itself and later creates a wide variety
of virtual scenarios tailored for robotics development. GenAI
has great potential once integrated into the currently available
tools for robotics development [32].

III. METHODOLOGY

At Tecnologico de Monterrey, undergraduate students ma-
joring in robotics learn about dynamic systems, control



Fig. 1. Overview of the Scene Generation Pipeline

engineering, computer vision (CV), neural networks, as well
as localization and mapping through an integrative project
spanning their junior and senior years. The goal of the junior-
year students is to make a Puzzlebot® [33] navigate within
a physical circuit by following a line and enabling it to
make steering decisions based on traffic signs without human
intervention [34]. By their senior year, the students program
the robot to simultaneously locate itself and map (SLAM) a
previously unknown environment, while completing a parcel
delivery task. The deliverable is a software project that allows
the robot to complete the intended mission (Fig. 2).

In the quest to expand the availability of our testing
environments while keeping similar learning experiences,
we proposed a scene generation pipeline (an overview in
Fig. 1), and implemented two proofs-of-concept (PoC) of a
simulator. The simulator consists mainly of an integration
work among ROS2, Unity 3D Engine [35] and CoppeliaSim
[36], along the resulting 3D scan of a place of interest
as a 3DGS scene and as a polygon mesh. The first PoC
includes a 3DGS scene for junior students, consisting of a
test circuit with traffic signs to try-out autonomous driving
for the Puzzlebot®. The second PoC includes a 3DGS scene
for senior students, consisting of an obstacle course with
“parcel delivery” ports. Both cases implemented a ROS2
communication interface (Fig. 2). The junior scene was
developed first and focused mostly on simulating the images
coming from the camera (Fig. 3). The senior scene was
developed later with an improved kinematics model of the
robot, an added LiDAR simulation through the generation
of a polygon mesh using photogrammetry, and a mock-
up subscriber for the gripper control signal, as its physical
simulation was not implemented (Fig. 4).

The dataset used to create the 3DGS scenes included at
least 1000 images from Standard 1080p videos taken by
a GoPro HERO 10 Black at an illuminance range of 400
to 1500 lux. The Structure-from-Motion (SfM) approach
for feature extraction, matching and spatial reconstruction
(including the polygon mesh) included the use of HLoc

[37] and COLMAP [23] [24]. The 3DGS scenes were
generated using the NeRF Studio gsplat library [38] and the
default Splatfacto model with the suggested “Quality and
Regularization” settings [19]. Post-processing was then done
using Blender 4.0 [20] to prune floating outliers and align
the 3DGS scene (imported into Unity) with the reconstructed
polygon mesh (imported into CoppeliaSim).

To validate the use of the simulator as a learning tool
for the aforementioned robotics techniques, software projects
from 3 teams of students (2 for the junior course, 1 for the
senior course) were used to control the robot in the simulator,
and the performance was compared against real tests on the
physical course. The software development tools used, and
the program logic implemented by the teams were not altered
when running tests on the virtual circuit to ensure a fair
comparison against the performance on the physical course.
Finally, we assessed the quality of the simulated images.

IV. EXPERIMENTS AND RESULTS

For the case of the junior course, the validation test
consisted of three trials (Fig. 5): first, a comparison of CV
performance when detecting the track line to be followed and
the pertinent traffic signs; second, a test to confirm the ability
of the robot to complete a full lap of the given circuit (while
being driven by a PID controller aiming at the track line);
and third, a quick assessment of the quality of the simulated
images through the overlap of HSV histograms.

Whilst parameters such as PID gains, image filter thresh-
olds and ROIs needed to be adjusted due to the simplistic
kinematic and camera model at this point, we obtained
promising results: Both junior teams detected the track line
and traffic signs at all times; one team ran a full lap without
human intervention, while the other team required limited
assistance to complete a lap; also we obtained an average
of 50% overlap between HSV histograms from the real and
simulated images despite the unaligned camera poses and
background differences, suggesting that the simulated images
are in the range of photorealism.



Fig. 2. Schematic of integration project: Either a Real Robot (1) or our Virtual Robot (2) can be used to develop the Example Robot Software (3)

Fig. 3. Scene for Junior Circuit Course

Fig. 4. Scene for Senior Obstacle Course

With the experience acquired creating the junior scene,
we then proceeded to create the senior scene utilizing
CoppeliaSim for the LiDAR simulation in addition to the
previously mentioned tools. In this case, the validation test
consisted of four trials (Figs. 6, 7, 8 and 9): the first
to confirm the CV performance by detecting the ArUco
markers; the second to assess the quality of the simulated
images through the use of a set of quality metrics (PSNR,
SSIM, cosine distance of VGG16 features, and normalized
histogram overlap of HSV, LAB and RGB channels) using
15 pairs of 1280x720-pixel 1-to-1 real (taken with an RPi-
Cam, and not part of the 3DGS training set) and simulated
images (Table 1); the third to verify the ability of the robot
to navigate the obstacle course autonomously by reading
the LiDAR scan and implementing a bug algorithm as a
simple, yet effective method for obstacle avoidance; and
the fourth to try exploring an outdoor scene by driving the
virtual robot manually while running a SLAM algorithm (i.e.
Cartographer [39]) to verify the portability of our pipeline.

Despite the need to modify some parameters like obstacle
avoidance tolerance, image processing thresholds and ROIs
due to complexity of the task, we obtained promising results:
The senior students were able to effectively detect the ArUco
markers; the robot could navigate at least once without hu-



Fig. 5. Trial tests for Junior project

Fig. 6. Image assessment tests for Senior project: ArUco Detection (1) and Image Quality (2)

Fig. 7. Histogram Overlap tests for Senior Project

man intervention; the image quality, had a tendency towards
the range of similarity (Luma PSNR average was above 28
dB, while the rest of the metrics had normalized averages
above 0.52); and the SLAM algorithm was able to create a
map of its virtual surroundings on an outdoor scene.

It should be noted that the image comparison made was
influenced by the use of a different type of camera for
scanning the scene (GoPro) and for taking the real sample
images for comparison (RPi-Cam), as well as the variable
lighting conditions during image collection. We also tried
doubling the number of images to train the 3DGS model to
increase the quality of the resulting scene (1282 vs. 2564).
However, the change in the average value and standard

deviation of the metrics did not appear to be significant
despite the change in the amount of images.

Like in the junior course, issues were encountered such as
variable illumination and light reflections in certain zones of
the scene at certain camera poses. In the case of the junior
scene, the challenge was to assure the correct detection of the
track line, as well as dealing with the natural imperfections
of the track and traffic signs. In the case of the senior scene,
it was dealing with the imperfections of the LiDAR signals
and the ArUco markers that needed to be detected at different
sections of the scene. Finally, student feedback suggests that
in overall, the developed simulator accurately emulates the
learning experience of the real environment.



Fig. 8. Runtime tests for Senior project: Course navigation with Real (1) and Simulated (2) Robot

TABLE I
IMAGE METRICS FOR SIMILARITY ASSESSMENT IN SENIOR COURSE

Quality Metric (Real vs. Sim.) Average Std. Dev.
(YCrCb) Luma PSNR [dB] 28.33 0.86

(Grayscale) SSIM 0.68 0.07
(RGB) VGG16 Cosine dist. 0.52 0.09

(HSV) H Hist. Overlap 0.54 0.09
(HSV) S Hist. Overlap 0.63 0.08
(HSV) V Hist. Overlap 0.63 0.10
(LAB) L Hist. Overlap 0.63 0.07
(LAB) A Hist. Overlap 0.70 0.11
(LAB) B Hist. Overlap 0.65 0.06
(RGB) R Hist. Overlap 0.67 0.07
(RGB) G Hist. Overlap 0.64 0.07
(RGB) B Hist. Overlap 0.60 0.07

Fig. 9. RViz Visualization of SLAM test

V. CONCLUSIONS

In this document, we proposed a scene generation pipeline
that leverages SfM algorithms, 3DGS and a robotics sim-
ulator to create an affordable virtual environment to teach
and learn about Robot Perception (RP). The pipeline was
implemented in 2 PoC robotics simulators. Based on this
experience, we believe the current PoCs can serve as valuable
tools for learning and practicing techniques related to RP at
the undergraduate level, and potentially at graduate level.

In the past, 3D scans have already been used to create
digital twins of objects for the development of robotic

applications [15] [16] [40]. However, to our knowledge, the
approach we took of using 3DGS to generate an entire virtual
environment to create a robotics simulator is novel. Besides
our educational application, we think that our approach
could be replicated in applications for professional use. It
may represent a feasible alternative particularly in situations
where, due to complex reflection and refraction phenomena
or harsh weather conditions [41] present in the environment,
the visual aspects of the simulation require physics models
that need heavy computations.

To address more complex challenges beyond RP tasks,
we will continue refining the kinematic and dynamic models
of the robot and the environment, incorporating system
perturbations, and extending beyond the availability of test
environments, to include more challenging scenarios. More-
over, we intend to make a port compatible with another
popular simulator, Gazebo [3]. As well, we would like to
integrate GenAI approaches to our solution to further en-
hance the learning experience. Finally, we also aim to study
the simulator’s impact on student engagement and learning
outcomes when they are introduced to the techniques used
in service robotics. We are looking to potentially apply
gamification techniques and the theory of mental flow [42]
to further enhance the educational experience.
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[35] A. Pranckevičius, “Gaussian Splatting playground in Unity,” Retrieved
June 27, 2024, URL: https://github.com/aras-p/UnityGaussianSplatting

[36] E. Rohmer, S. P. N. Singh and M. Freese, ”CoppeliaSim (formerly
V-REP): a Versatile and Scalable Robot Simulation Framework,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Tokyo, Japan, 2013, pp. 1321-1326.

[37] P. E. Sarlin, C. Cadena, R. Siegwart and M. Dymczyk, ”From Coarse
to Fine: Robust Hierarchical Localization at Large Scale,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 2019, pp. 12708-12717.

[38] V. Ye and A. Kanazawa, “Mathematical Supplement for the
gsplat Library,” arXiv preprint arXiv:2312.02121, 2023, URL:
https://arxiv.org/abs/2312.02121

[39] ROS2. (2024, April). Cartographer ROS Integration [Online]. Avail-
able: https://github.com/ros2/cartographer ros

[40] S. Tyree et al., ”6-DoF Pose Estimation of Household Objects for
Robotic Manipulation: An Accessible Dataset and Benchmark,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Kyoto, Japan, 2024, pp. 13081-13088.

[41] C. Qian, Y. Guo, W. Li, and G. Markkula, ”WeatherGS: 3D Scene Re-
construction in Adverse Weather Conditions via Gaussian Splatting,”
in IEEE International Conference on Robotics & Automation (ICRA),
Atlanta, USA, 2025.

[42] S. W. Vann and A. A. Tawfik, “Flow Theory and Learning Experience
Design in Gamified Learning Environments,” in Learner and User
Experience Research: An Introduction for the Field of Learning Design
& Technology. EdTech Books, 2020


